martes, 22 de mayo de 2018

Un gavial sudamericano

La diversidad de los crocodilianos actuales (Crocodylia) se concentra en tres grupos: la superfamilia de los cocodrilos (Crocodyloidea), la de los aligátores y caimanes (Alligatoroidea) y la de los gaviales (Gavialoidea).

Cabezas de cocodrilo (izquierda), gavial (centro) y aligátor (derecha), representantes morfológicos de sus grupos. Arte de Davide Bonadonna.

En esta última encontramos a los gaviales, representados hoy por una única especie: Gavialis gangeticus, un bicho en peligro crítico de extinción (según evaluaciones de la IUCN) que habita en Pakistán, India, Bangladesh y Birmania. Lo peculiar de esta especie es su hocico extremadamente delgado, el cual es referido como una adaptación eficiente para la captura de peces bajo el agua.

Rango y estatus de conservación del gavial (Gavialis gangeticus), tomado de la IUCN.

Los gaviales extintos (género Gavialis) se conocen desde el Mioceno, hace unos 20 millones de años. Y sus fósiles han sido desenterrados desde Francia y hasta África y Oceanía (en Indonesia). Dada esta distribución, era relativamente lógico pensar que el grupo fue exclusivo del viejo mundo. O al menos, eso es lo que casi todos teníamos entendido.

Distribución de los gaviales fósiles. Tomado de FossilWorks.

Y luego ¡Boom! Un estudio del 2007 mostró que los gaviales, o al menos, miembros de la familia habían conseguido dispersarse vía Atlántico hacia el nuevo mundo. Se describía en ese entonces a la subfamilia Gryposuchinae (y a la especie de Puerto Rico: Aktiogavialis puertoricensis), un grupo de gaviales que habitó las Américas (Sudamérica y el Caribe) desde el Oligoceno (al menos).

Distribución en las américas de los Gryposuchinae (sin contar al gavial de Puerto Rico). Tomado de FossilWorks.

La cosa es que los restos de estos gaviales del nuevo mundo eran bastante fragmentarios y algunos tenían dudas sobre si tendrían el aspecto de sus primos modernos. Y recientemente se describió a una nueva especie de gavial de Perú: Gryposuchus pachakamue, que vivió hace 13 millones de años en lo que hoy es Iquitos. El gavial de la "madre tierra" (por el epíteto específico), mostró en detalle por primera vez la forma del hocico del animal, tanto con la mandíbula como con el cráneo. Y es que antes, los otros gaviales americanos eran conocidos principalmente por la parte trasera de cráneos fragmentados.

Holotipo de Gryposuchus pachakamue. Tomado de PLoSONE.

Gryposuchus pachakamue (gri-po-su-kus  /  pa-cha-ka-mu-e) y este nuevo estudio, nos muestra que los gaviales americanos tenían el hocico bastante delgado, pero no tan largo como los gaviales modernos y que los ojos, no estaban posicionados tan altos en la cabeza. Estos animalitos vivieron del Oligoceno al Mioceno tardío y una vez que el clima comenzó a aridificar el cono sur, los gaviales se extinguieron. ¡Qué cosa más extraña sería ver a uno de esos animales vivo en América!

Y tú ¿ya sabías que hubieron gaviales en este lado del charco?

Fuentes principales:
Vélez-Juarbe, J., Brochu, C. A., & Santos, H. (2007). A gharial from the Oligocene of Puerto Rico: transoceanic dispersal in the history of a non-marine reptile. Proceedings of the Royal Society of London B: Biological Sciences, 274(1615), 1245-1254.

Salas-Gismondi, R., Flynn, J. J., Baby, P., Tejada-Lara, J. V., Claude, J., & Antoine, P. O. (2016). A new 13 million year old gavialoid crocodylian from proto-Amazonian mega-wetlands reveals parallel evolutionary trends in skull shape linked to longirostry. PloS one, 11(4), e0152453.



lunes, 21 de mayo de 2018

El Brayan y la Britany sobrevivieron

¿Cómo se le hace para sobrevivir como especie durante un evento de extinción masiva? Durante mucho, los paleontólogos han hipotetizado sobre los diferentes factores que podrían contribuir a hacer de una especie, un exitoso sobreviviente de uno de estos eventos. Después de todo, no es para menos, pues al menos cinco extinciones masivas han modelado el destino de todos los organismos actuales del mundo.

En rojo, las cinco extinciones masivas de la historia.

Las cinco muertes extinciones masivas han acabado con más del 50% de las formas de vida del planeta y en algunos casos, como en el de la extinción Pérmica, con más del 90%. Es precisamente esta extinción masiva, ocurrida en al menos dos pulsos durante el fin del Pérmico e inicios del Triásico, la que está en la mira de un grupo de investigadores que se dio a la tarea de investigar las causas potenciales de la sobrevivencia de ciertos grupos animales durante esta catástrofe.

Escena artística durante la extinción Permo-triásica. Podemos ver un gorgonopsio muerto (con un dinosauriforme encima) y un grupo de dicinodontes avanzando. Arte de Julio Lacerda.

Los investigadores recurrieron al análisis de la microestructura de los huesos de distintas especies de dicinodontes, gorgonopsios, terocéfalos y cinodontos (juro por mi madre que estos son grupos que existieron y no un conjuro de Harry Potter). Tras el análisis, los investigadores encontraron evidencias de que las especies animales que vivían poco y se reproducían mucho fueron las que lograron persistir luego de la hecatombe del Pérmico.

Resultados del análisis osteológico de Botha-Brink y colaboradores. En azul, los grupos que crecían lento, vivían más y se reproducían a edad tardía. En rojo, aquellos kébines que crecían, se reproducían y morían velozmente. La línea marcada como PTB referencia la transición del Pérmico (abajo) al Triásico (arriba). 

Es decir: la clave para sobrevivir a la extinción en masa más cruda de toda la historia de la vida en la tierra(™), era vivir como un "brayan" o una "brítany", con un ojo en la bala y el otro en la cama... O algo por el estilo. Esta propiedad es relativamente nueva entre las que se han propuesto para explicar por qué algunos grupos viven y otros se extinguen, siendo además, la única con evidencia suficiente como para instalarse, de forma totalmente inesperada en el "salón de la fama" de los sobrevivientes.

Fuente principal (artículo libre):
Botha-Brink, J., Codron, D., Huttenlocker, A. K., Angielczyk, K. D., & Ruta, M. (2016). Breeding young as a survival strategy during Earth’s greatest mass extinction. Scientific Reports, 6, 24053.


domingo, 20 de mayo de 2018

La extinción de los ictiosaurios

¿Conoce usted a los ictiosaurios? Si es un paleofan, ¡seguro que sí! Se trata de esos reptiles acuáticos con forma de delfín, a los que la gente suele referir (erróneamente) como "dinosaurios acuáticos". Los ictiosaurios evolucionaron por allá del Triásico, hace unos 250 millones de años, unos 20 millones de años antes que los famosos dinosaurios. Y vivieron hasta el Cretácico cuando se extinguieron.

Shonisaurus popularis y Californosaurus perrini, un par de ictiosaurios del Triásico. Arte de Todd Marshall.

Seguramente muchos pensarán que los ictiosaurios perecieron junto con el resto de fauna icónica del Mesozoico durante los eventos del K/Pg, que incluyeron actividad volcánica en la India (las Deccan Traps) y el famoso impacto de Chicxulub. Si es así, me temo que tengo malas noticias... En realidad, los pobres ictiosaurios desaparecieron de la faz de la tierra antes del cierre dramático del Cretácico. El grupo estaba extinto para el Cretácico tardío, pero en su fase temprana. El último ictiosaurio registrado vivió en lo que hoy es Europa, hace unos 94.7 millones de años, durante un lapso conocido como "Cenomaniano". Es decir, 28.7 millones de años antes del final de los dinosaurios no avianos.

Temporalidad de los sucesos relatados en esta entrada. Silueta de ictiosaurio de Nobu Tamura.

Las ideas del por qué ocurrió esto son muy variadas. La mayoría suponen que existió competencia entre los ictiosaurios y otros reptiles marinos, como los emergentes mosasaurios, que acababan de evolucionar y que presuntamente, eran tan buenos depredadores que extinguieron a los pobres "delfinosaurios" por exclusión competitiva.

Los mosasaurios son los sospechosos de haber aniquilado a los ictiosaurios. Acá vemos unos tras un cadáver de dinosaurio que flota en el mar. Arte de Julio Lacerda.

Según un estudio publicado recientemente, los ictiosaurios vieron dos eventos de extinción, el primero hace unos 100 millones de años y el segundo, hace unos 95. El primer evento, extinguiría por completo a los ictiosaurios del Océano Índico y diezmaría fuertemente al resto de los ictiosaurios del mundo. Ya para el segundo evento, sólo quedaban un par de taxones, limitados a Europa y a Norteamérica, ambos del género Platypterygius.

Platypterygius bannovkensis, un representante del género que se convertiría en el último de los ictiosaurios. Arte por Andrey Atuchin.

En el nuevo estudio se sugiere que durante el tiempo en el que los ictiosaurios vieron su fin, los ecosistemas oceánicos se estaban reconfigurando y el entorno estaba cambiando (se hacía más cálido y se abrían nuevas zonas poco profundas). Los ictiosaurios del lapso anterior a sus dos pulsos de extinción mostraban poca disparidad morfológica, lo que sugiere una baja capacidad de adaptación, que los puso en riesgo de desaparecer. Esto supone que más que la competencia en sí, fue una combinación de ambiente cambiante, más incapacidad de competir, lo que puso fin a este magnífico grupo de reptiles. Una verdadera lástima.

Fuente principal (artículo libre):
Fischer, V., Bardet, N., Benson, R. B., Arkhangelsky, M. S., & Friedman, M. (2016). Extinction of fish-shaped marine reptiles associated with reduced evolutionary rates and global environmental volatility. Nature communications, 7, 10825.


miércoles, 11 de abril de 2018

10 hechos sobre quimeras que quizá no sabías...

En esta ocasión les traigo el fruto gráfico de un trabajo de ¡casi una semana! Este podría ser considerado un feo repost, pues lo colgué en la página de Facebook Palaeos, pero casi nunca comparto el contenido de la página de FB acá y me parece una buena idea tener esta suerte de "respaldo". Además de que este trabajo fue una chulada de hacer. Así que sin más les dejo la siguiente galería:


El grupo mayor que contiene a todas las quimeras (extintas y modernas) es la subclase Holocephali. Sin embargo, las quimeras modernas se agrupan en el superorden Holocephalimorpha, que no sólo incluye a las quimeras modernas, sino también a muchos grupos extintos, pero cercanos. Las tres familias de quimeras modernas se agrupan en el orden Chimaeriformes y en el suborden Chimaeroidei. ¡Qué lío! Y todo porque las quimeras son abundantes en el registro fósil y se han descrito muchas familias.
 

En español, también son llamadas "peces rata", pero esto es copiado del inglés. Originalmente fueron llamadas quimeras o tiburones fantasma. La mayoría de las especies son llamdas "quimera" y se acompaña de algún descriptivo como su lugar de origen. Por ejemplo: quimera cubana (Chimaera cubana)... Sólo Callorhinchus callorhynchus se libra del estigma y es llamado "pez gallo" o "pejegallo". ¿Kikiriki?


Hasta ahora ninguna quimera ha sido registrada en el abismo, aunque suena cool decirle así a las zonas profundas del mar. Pero el abismo en realidad se define como la zona que está por debajo de los 4 kilómetros de profundidad. Como curiosidad, la mayoría de las quimeras de la familia Rhinochimaeridae fueron descritas en la segunda mitad de siglo XX. Mientras que la mayoría de las de la familia Chimaeridae fueron descritas a partir del 2002 y por hallazgos fortuitos. Al parecer la pesca industrial cada vez llega a mayores profundidades.


Esta es una de las razones por las que las quimeras parecen una amalgama de otros peces. El opérculo era exclusivamente conocido en los peces óseos, aunque en estos está conformado de una serie de placas óseas y es móvil. Si ves una quimera dibujada con esas aperturas branquiales típicas de tiburón, sabes que no está bien hecha. Otra curiosidad: los arcos branquiales de los elasmobranquios siempre están por detrás del cráneo, pero las de las quimeras están justo por debajo del mismo, de forma similar a varios peces óseos. ¿Raro no?


Por cierto, sólo los machos poseen dentículos, pues son los únicos que portan tentáculos y cláspers. Las hembras van 100% desnudas todo el tiempo.


Si te preguntas entonces ¿como o qué come una quimera? La respuesta es que comen cosas duras que trituran con tres juegos pares de placas que tienen en la boca y ese alimento se muele otro poco más en el esófago (que es contráctil). El intestino sólo funge como superficie de absorción de nutrientes. ¿Alguien dijo gastritis? ¡No en las quimeras!


Y encima de eso, esos poros abdominales comunican el celoma con el exterior... Los ictiólogos sospechan que es para regular la flotabilidad, aunque no hay datos concluyentes. Otros "peces" que portan esos poros los usan como medios de expulsión de esperma, pero los machos de quimera tienen órganos intromitentes que sirven para esa función y sus testículos no descargan esperma directo a la cavidad abdominal.


Lo curioso es que en otros organismos marinos venenosos existen glándulas especiales que secretan el veneno. En las quimeras, existen lagunas de dentina (el mismo material del que están rellenos nuestros dientes) que portan el tejido secretor de veneno... Ponzoñozas como la cola de la mítica quimera, con cabeza de serpiente.

Bonus: radiografía de muslo de pescador con una espina de quimera bien enterrada. Tomada de: Hayes, A. J., & Sim, A. J. W. (2011). Ratfish (Chimaera) spine injuries in fishermen. Scottish medical journal, 56(3), 161-163.


El proceso en acción en esta hembra juvenil de Chimaera monstrosa.


Dato curioso, muchos embriones de peces óseos, desarrollan primero la ceratotriquia y esta es reemplazada por la lepidotriquia. Como en la bella historia de Haeckel, la ontogenia parece recapitular la filogenia.


En la "familia" de las quimeras podemos encontrar algunos "peces" fósiles famosos, pero que casi siempre con mal, muy mal reconstruidos. Como el famosísimo Helicoprion y el extraño Edestus, que son retratados como tiburones genéricos que algún bromista pegó unos dientes en espiral y otros en forma de tijeras... Cuando veas un Helicoprion o un Edestus pregúntate... ¿dónde está la espina de la aleta dorsal? ¿por qué omiten la segunda aleta dorsal (o a veces la primera)? ¿por qué les hacen branquias de tiburón si seguramente tenían opérculo? ¿por qué tienen aletas de piel gruesa si seguramente tenían aletas similares a la de las quimeras? ¿por qué llevan la narizota de fuera como tiburón si en realidad estaría en posición ventral y parcialmente oculta por los dobleces de los labios? Y más importante ¿por qué siempre dibujan hembras? ¿y los claspers?





Espero el tema sea de su agrado. Hasta la próxima.


viernes, 6 de abril de 2018

Las quimeras descienden de tiburones

Hablemos de condrictios, también conocidos como peces cartilaginosos, un grupo que existe desde hace al menos 460 millones de años y que hoy contiene a dos grandes grupos. Por un lado a los basales Holocephali, conocidos como quimeras o peces rata (ya que algunas especies tienen colas largas en forma de látigo y placas dentales que semejan incisivos de roedor). Y por otro lado a los diversos Elasmobranchii, que incluyen a los Batomorphi (rayas y sus parientes) y a los Selachii (que en su mayoría son tiburones clásicos). Cuando uno mira un árbol evolutivo (cladograma) de este grupo, se aprecia algo así:

Filogenia actualizada de los peces cartilaginosos modernos, basada en caracteres morfológicos y moleculares. Construida a partir de las referencias 2 a 6.

Al ver dicho cladograma, uno tiene la impresión de que el cuerpo "tiburonoso" es decir, la morfología de tiburón surgió de forma tardía en el grupo, hasta los Galeomorphii y que, la morfología de quimera al ser basal, debería ser similar a la que presentaba el ancestro común de quimeras y elasmobranquios. Y digo, es casi siempre el caso para muchos grupos. Veamos por ejemplo a los dinosaurios. Uno ve a bichos basales como Herrerasaurus, Eoraptor o Eodromaeus y piensa "¡Ajá!, seguro los proto-dinosaurios lucían algo similar" y nadie mira el gran árbol de los dinosaurios, ve un gorrión (uno de los dinosaurios más derivados) y piensa "¡Ajá!, seguro los primeros dinosaurios lucían como gorriones". Y cuando uno mira a los proto-dinosaurios, la sospecha se corrobora en gran medida, bichos como los Lagerpeton, Marasuchus y los Silesauridae se parecen a los dinosaurios mencionados previamente. Es pues, la regla mirar a los basales de un grupo y conferirles la anatomía base ancestral. Pero ¿es el caso para estos bichos marinos?

Estas son las relaciones de parentesco de las quimeras. Uno esperaría que las formas similares a la familia Chimaeridae, fueran similares a las ancestrales para el grupo y quizá para todos los condrictios. Basado en la fuente 4.

Un nuevo estudio (1) analiza de nuevo a diferentes grupos de condrictios (vivos y extintos) y prestando especial atención al neurocráneo (la "caja" donde se resguarda el encéfalo), trazan una filogenia que ya se había perfilado poco a poco en diferentes estudios, pero que nos sorprende con varias cosas interesantes. De buenas a primeras, notamos que las quimeras no son, como pensábamos y se recita como corolario: primitivas. De hecho, la morfología de quimera es muy, pero muy avanzada. La morfología basal de los condrictios es la de tiburón. El grupo hermano de las quimeras (Cladoselachimorpha) incluye "tiburones" bien conocidos como los stetacántidos con "tablas de planchar" en la cabeza o al tan confundido Cladoselache, que se toma por ancestral a todos los condrictios, pero que hoy vemos que no es el caso, se trata de un tiburón derivado. También otros grupos son desterrados del prejuicio de lo primitivo y se incorporan como parte del linaje de los tiburones y rayas, se trata de los xenacantiformes y los tenacantiformes.

Filogenia resumida de los condrictios, con especial atención al grupo de las quimeras y sus parientes. Modificado de Coates et al. (2017). Figura de la quimera moderna del libro "Fishes of the World". El resto de los dibujos fueron elaborados por su servidor (usando reconstrucciones esqueléticas en la mayoría de los casos). Note usted estimado lector que los linajes antiguos se representan por líneas negras, los linajes modernos con letras en negrita, el linaje de tiburones y rayas (el de los elasmobranquios) se representa con azul, el de los cladoselaquimorfos con rojo y con naranja el de las quimeras. Las estrellas moradas indican la presencia de la morfología de tiburón; la estrella verde la morfología de quimera y la rosa, la diversidad de nuevas formas (especialmente las aplanadas de los Batomorphi).

Si vemos la base del cladograma anterior, notaremos que la morfología de tiburón está presente en los condrictios basales (que no son de ningún linaje moderno en especial), como Doliodus. Y es precisamente esta forma arquetípica la que es basal. Así que ahora que veas a una quimera, verás que su morfología no es primitiva, sino todo lo contrario, ya que éstas descienden de condrictios con forma de tiburón.


Fuentes:
  1. Coates, M. I., Gess, R. W., Finarelli, J. A., Criswell, K. E., & Tietjen, K. (2017). A symmoriiform chondrichthyan braincase and the origin of chimaeroid fishes. Nature, 541(7636), 208.
  2. McEachran, J. D., & Aschliman, N. (2004). Phylogeny of batoidea. Biology of sharks and their relatives, 79-113.
  3. Heinicke, M. P., Naylor, G. J. P., & Hedges, S. B. (2009). Cartilaginous fishes (Chondrichthyes). The timetree of life, 9, 320-7.
  4. Inoue, J. G., Miya, M., Lam, K., Tay, B. H., Danks, J. A., Bell, J., ... & Venkatesh, B. (2010). Evolutionary origin and phylogeny of the modern holocephalans (Chondrichthyes: Chimaeriformes): a mitogenomic perspective. Molecular biology and evolution, 27(11), 2576-2586.
  5. Vélez-Zuazo, X., & Agnarsson, I. (2011). Shark tales: a molecular species-level phylogeny of sharks (Selachimorpha, Chondrichthyes). Molecular phylogenetics and evolution, 58(2), 207-217.
  6. Nelson, J. S., Grande, T. C., & Wilson, M. V. (2016). Fishes of the World. John Wiley & Sons.
  7. Dean, M. N., Summers, A. P., & Ferry, L. A. (2012). Very low pressures drive ventilatory flow in chimaeroid fishes. Journal of morphology, 273(5), 461-479.
  8. Kolmann, M. A., Huber, D. R., Dean, M. N., & Grubbs, R. D. (2014). Myological variability in a decoupled skeletal system: batoid cranial anatomy. Journal of morphology, 275(8), 862-881.

jueves, 29 de marzo de 2018

Paleoficha: Pterodactylus antiquus

Nombre común: Terodáctilo.

Nombre científico: Pterodactylus antiquus (te-ro-dac-ti-lus   /   an-tik-us).

Significado del nombre: El género viene del griego "πτερόν" (ala) y "δάκτυλος" (dedo). Mientras que el epíteto específico significa "antiguo". Por ende, la traducción del nombre de la especie es "dedos alados antiguos".

Descrito por: el paleontólogo alemán Samuel Thomas von Sömmerring**, en 1812*.

Grupo taxonómico: se trata un miembro del grupo de los reptiles voladores (Pterosauria) y dentro de este, del grupo de los terodactiloides (Pterodactyloidea), un grupo de pterosaurios de colas cortas y cabezas largas y usualmente crestadas.

Espécimen tipo de la especie P. antiquus, identificado como un subadulto.

Rango temporal: vivió durante el Jurásico tardío, entre hace 150.8 y 148.5 millones de años.

Encontrado: principalmente en la Formación Solnhofener Plattenkalk (Solnhofen), Alemania.

Conocido a partir de: Una plétora de especímenes, desde juveniles a adultos.

Restauración de un individuo de talla grande de Pterodactylus antiquus por Julio Francisco Garza Lorenzo (visita su página en JuliusART). 

Curiosidades: Cuando oigas o leas mencionar a un tal "terodáctilo", como en los power rangers, se están refiriendo a esta especie. La tradición de llamar a todo el grupo como "terodáctilos" surgió en la prensa de Alemania a mediados de 1800 y fue porque este hallazgo impactó tanto que el nombre del género de esta especie fue la bandera de todo su árbol familiar, el grupo en realidad se llama "terosaurios". Este animal tenía una gran variación morfológica, tanto al momento de crecer (variación ontogenética), como en los sexos (variación sexual). Esto llevó a que se erigieran nuevas especies a partir de esas sutiles variaciones, pero posteriores análisis han demostrado que sólo existe Pterodactylus antiquus. A veces, estas variaciones eran justificadas y se distinguían nuevas especies que eran trasladadas a otros géneros como Germanodactylus y Aurorazhdarcho. Algunos especímenes de terodáctilo muestran una "cresta" justo por encima y detrás de la cabeza, hecha de tejidos blandos. Por tradición, algunos artistas la reconstruyen como una extensión de la ranfoteca (pico córneo), pero estudios detallados revelan que son dos crestas distintas. Una que se sitúa encima de los ojos, hecha de un tejido córneo que pudiera ser de naturaleza similar a la de la ranfoteca. Y una segunda cresta, llamada "occipital lappet" localizada en la parte posterior de la cabeza y hecha de filamentos enrollados en espiral, algo así como un "gallo" duro. Estas estructuras están presentes en la reconstrucción presentada arriba. Cabe destacar que cuando se describió (pero no nombró) en 1802, se pensaba que era una rara ave acuática. En 1809 el anatónomo francés Georges Cuvier refutó la idea y estableció que era un tipo nuevo de reptil (y nombró al género como Pterodactylus, "ala dedo"). En 1812 Samuel Thomas von Sömmerring describió la primer especie como Ornithocephalus antiquus (hoy Pterodactylus antiquus), cuyo nombre significa "cabeza de ave antigua". Sömmerring pensó que se trataba de una rara especie transicional entre aves y mamíferos, una especie de murciélago raro, algo que desde luego no es cierto, ya que aves y mamíferos no compartimos el mismo ancestro común inmediato. Esta idea generó reconstrucciones como esta de 1843.

Reconstrucción de Edward Newman de dos terodáctilos.

*Descripción original: Sömmerring, S. V. (1812). Über einen Ornithocephalus. Denkschriften der Akademie der Wissenschaften München, Mathematisch–Physik, 3, 89-158.

**Descripción original del género: Cuvier, G. (1809). Mémoire sur le squelette fossile d’un reptile volant des environs d’Aichstedt, que quelques naturalistes ont pris pour un oiseau, et dont nous formons un genre de Sauriens, sous le nom de Ptero-Dactyle. In Annales du Muséum national d'Histoire Naturelle, Paris (Vol. 13, pp. 424-437)..


Literatura adicional consultada:
Bennett, S. C. (2013). New information on body size and cranial display structures of Pterodactylus antiquus, with a revision of the genus. Paläontologische Zeitschrift, 87(2), 269-289.