sábado, 18 de marzo de 2017

Cómo leer un cladograma

ADVERTENCIA

Antes de iniciar debo aclarar algo de vital importancia: los cladogramas NO deben ser tratados como "verdades", pues TODOS reflejan únicamente hipótesis de relaciones evolutivas. No existe tal cosa como EL cladograma verdadero. Hay hipótesis mejores que otras claro, y por "mejor" me refiero a bien construidas (con medidas de soporte altas) y con buena cantidad de evidencia (refiriéndome como las "peores" hipótesis a las hechas únicamente con un tipo limitado de carácter).

Desde hace tiempo, he visto que tanto aficionados a la biología como a la paleontología y entre los estudiantes de dichas ciencias hay muchos malentendidos en lo que respecta a los cladogramas.

Duda número 1: ¿qué es un cladograma?

Antes que todo, ¿qué es eso? Bueno, un cladograma (como fue definido por Joseph H. Camin y Robert R. Sokal en 1965) es un dendrograma* que refleja las relaciones de parentesco entre los taxones terminales. Es decir, es un gráfico en forma ramificada que muestra las relaciones evolutivas que hay entre las puntas de las ramas. En esas puntas se colocan aquellas entidades de las que nos interese conocer sus relaciones evolutivas. Ellas pueden ser individuos, poblaciones, especies, géneros, etc. De ahí que a estas entidades se les conozca como OTUs (unidades taxonómicas operativas) y que este término, planteado por Sokal y Sneath en 1963 sea tan vago que pueda incluir cualquiera de las entidades antes mencionadas.

*Nota: un cladograma se genera de forma distinta de un dendrograma, el primero usa métodos cladistas, el segundo, estadísticos.

En las ramas terminales de los cladogramas encontramos OTUs. La proximidad de las ramas nos indica la cercanía de parentesco. Por ejemplo el OTU z y el OTU y son parientes cercanos, mientras que el OTU z y el OTU v son parientes bastante distantes.

¿Notaron el cambio de formato entre cladogramas? El de la primer figura es inclinado y el segundo es vertical. ¿influye en algo esto? La respuesta es: NO. La forma del cladograma no influye en su lectura, salvo si el grupo externo está colocado de forma diferente; aunque aquí, no es el caso. Veamos algunos tipos.

Estos cladogramas dicen exactamente lo mismo, así como los iPhones, que aunque se vean diferentes, son siempre lo mismo. La forma del cladograma no afecta su lectura. Algunos tipos son preferibles cuando el conjunto de datos es muy grande o para mapear caracteres. Lo demás, es mero estilo.

Hablemos de lectura de parentesco, pues muchos la entienden algo mal. Vean la imagen anterior. Muchos pensarán que "x" (omitamos lo de OTU, pues ya debe quedar claro) es más cercano a "y" por su proximidad espacial en el gráfico, pero esto es un error. En realidad "w" y "x" son igual de cercanos tanto a "y" como a "z". Y es que el truco es ver los nodos, no la cercanía de los nombres en el gráfico. Tratemos con una analogía: "w" eres tú (Waldo), "x" es tu hermano (Xavier), "y" es tu primo (Yair) y "z" es el hermano de tu primo (Zacarías), por ende también tu primo. Cuando hablamos de parentesco, tú mi estimado Waldo (por cierto, te andan buscando) no eres más cercano que Xavier a Yair, tampoco Xavier es más cercano que tú a Yair o a Zacarías, tanto tú como Xavier, están en igualdad de proximidad de parentesco tanto a Yair como a Zacarías.

Todos estos cladogramas son distintos, pero no. Aunque tienen el orden de las letras diferentes, en realidad, el orden de lectura es el mismo, por lo que a la hora de interpretar, dicen lo mismo.

Revisemos la hermandad de los OTUs. En el ejemplo que hemos visto, W es hermano de X tanto como Z de Y. A su vez, X+W es el grupo hermano de Z+Y. Finalmente, (X+W)+(Z+Y) es hermano de V. De forma tal que podemos representar nuestro cladograma con notación: V+((X+W)+(Z+Y)). Esta ya no se usa, pero si alguna vez se la topan, ahora saben qué significa.

Grupos hermanos. La hermandad de W y X está representada por el cuadro rojo, la de Y y Z por el azul, la de el grupo W+X y Y+Z por el cuadro morado y la del grupo ((W+X)+(Y+Z)) con V con el cuadro verde.

Estos grupos hermanos comparten algo. Ese algo es el ancestro común de cada clado. ¡Hey! ¿Qué es un clado? No se asuste lector. Un clado es un grupo formado por los descendientes del mismo ancestro común inmediato (es decir, monofilético, como señaló Dupuis en 1984 y como fue la intención de Huxley cuando acuñó el término). Estos por lo regular contienen dos OTUs, pero a veces, pueden incluir más.

En rojo, un clado. En verde, un grupo más artificial que el colorante "E123 Amaranto" en una soda...

Cuando del mismo ancestro surgen varias ramas, se denomina politomía. Las politomías generalmente reflejan hipótesis no resultas (i.e. no queda claro quién es más cercano a quién en el grupo) y las conocemos con el nombre no técnico de "peines".

En rojo, una espantosa x politomía entre los OTUs X, Y y Z. Dicha politomía refleja que tanto X como Y y Z comparten un único ancestro común, pero las relaciones internas de ese grupo están sin resolver (es decir, no sabemos si X y Y o X y Z están más emparentados). Para resolver estas politomías se recomienda incluir más información al análisis (más datos morfológicos o moleculares suelen resolver esos "peines").

Mencioné ancestros cuando definí lo que era un clado, pero espera un momento... ¿Dónde están los ancestros en el cladograma? Este es otro punto importante, pues casi siempre se malinterpreta lo que es un ancestro. Primero que nada, debo aclarar algo de suma importancia: en todo cladograma los ancestros son hipotéticos y están situados en los nodos de los grupos. Esta es quizá la "debilidad" más grande de la sistemática cladista: es casi completamente ciega a los ancestros. Bien podríamos tener al ancestro haciendo un clado con su descendiente y no podríamos darnos cuenta sólo con mirar la topología (orden de ramas) del cladograma. Podríamos inferir que estos grupos (ancestro y descendiente) parten de un ancestro común que como dije, es hipotético (i.e. no lo conocemos) y esto suele pasar a menudo (véase por ejemplo el caso del bisonte moderno Bison bison, como descendiente directo de Bison antiquus "occidentalis" en el trabajo de Wilson y colaboradores del 2008; donde estos grupos aparecen como clados hermanos).

Ancestros en los cladogramas, sí, son esos puntos de colores y si los retiramos, los ancestros quedan en cada nodo y siempre son hipotéticos. El punto rojo representa el ancestro común de W y X, el punto azul el de Y y Z, el verde el ancestro común de W, X, Y y Z; finalmente, el punto Barney morado representa el ancestro de todos los OTUs en el cladograma.

Algo importante a destacar es la relación de la distancia entre clados. OJO, no entre los OTU's, que sabemos que su posición en un clado puede cambiar sin afectar la lectura del cladograma, ni su significado. Pues, los cladogramas tienen dos ejes. En el eje X tenemos la disparidad de caracteres. Es decir, entre más lejanos sean los clados en el eje X, más dispares son sus caracteres (derivados de novedades evolutivas claro). En muchos lados a esto lo llaman divergencia morfológica, pero no todos los cladogramas se construyen a partir de esa información y hoy, muchos están hechos con datos moleculares (predominantemente de secuencias de ADN); por lo que decir "disparidad morfológica" no tiene mucho sentido. En cambio, en el eje Y tenemos la divergencia en el tiempo. La región de la raíz representa el tiempo pasado y los ápices de las ramas, donde tenemos situados a los OTUs, representa el presente de dichos OTUs. Es decir, si nuestros OTUs son especies modernas, el ápice de las ramas representa el tiempo presente. Pero ¿qué pasa cuando no es así?

En este ejemplo, V es muy diferente del resto, pero es más similar a W que a X, Y o Z. A su vez, W es semejante a X, Y y Z pero por su ubicación, es igual de semejante a esta tercia que a V. Por otro lado, el ancestro de X, Y, Z (en rojo) es más cercano al tiempo presente que el ancestro de W, X, Y, Z (en verde) y éste es más cercano al tiempo presente que el ancestro de todos los OTUs (en morado). Dicho de otra forma: el ancestro morado es más viejo que el ancestro verde y éste es más viejo que el ancestro rojo.

Cuando nuestros OTUs no son todos modernos o bien, no son contemporáneos entre ellos, el cladograma adquiere suma importancia en su eje de disparidad temporal, pues usándolo de maneras especiales, podemos calibrar cladogramas. Veamos.

Cladograma calibrado con el tiempo. Para una mejor descripción, véase el párrafo siguiente. Nota: no todos los cladogramas horizontales están calibrados. Si no tiene línea temporal, no está calibrado. Un cladograma calibrado puede tomar cualquier forma. Además, la longitud de las ramas, no siempre indica temporalidad. A veces, la longitud de las ramas indica acumulación de cambios (i.e. ramas largas: muchos cambios, ramas cortas: pocos cambios).

Primero que nada, este cladograma está "acostado", pero como vimos anteriormente, esto no afecta la lectura del mismo. De hecho, es como casi todos los cladogramas que he presentado hasta ahora, incluso los ancestros hipotéticos que vimos están con los mismos colores y en las mismas posiciones. Aquí, la raíz va hacia la izquierda y el presente está representado por una linea punteada roja. Las otras lineas punteadas representan la separación entre los lapsos temporales. Como vemos, de un ancestro común desprende todo el grupo. Este ancestro común es el morado que vivió durante el lapso 1. Durante el lapso 2 temprano tenemos la aparición en el registro fósil hipotético de V (representado por líneas más gruesas) y del ancestro de los clados W+X y Y+Z, en verde. Durante el lapso 2 medio tendremos al ancestro de Y y Z (en azul). Posteriormente, durante el lapso 2 tardío aparecerá Y y justo después el ancestro de W y X. Durante el lapso 3 medio veremos la aparición de Z, que persistirá hasta el presente. Para el lapso 4 temprano veremos la aparición de X. Finalmente, para el lapso 4 tardío veremos la aparición en el registro de W. Dado esto, sólo W y Z son OTUs que aparecen en el presente, siendo Z un OTU pancrónico (que ha vivido mucho tiempo sin cambios notables desde nuestra perspectiva).

A veces, para ilustrar mejor los pasos evolutivos vistos en un cladograma, se coloca en las ramas algo llamado estado de carácter. A esta acción se le denomina mapeo de caracteres y lo que hace es que coloca en el cladograma las características que hacen únicos sus clados (eso sí, este proceso no se hace así como así, sino que involucra toda una metodología aparte y el cladograma no queda a gusto del cliente, sino de la evidencia). Esto es especialmente útil cuando se quiere representar de forma gráfica la aparición de nuevas adaptaciones.

Caracteres inventados, dispuestos de forma lógica en un cladograma.

Y finalmente (al menos por ahora), hay que hablar de una parte de los cladogramas verdaderos que siempre está ahí, pero que de buenas a primeras nos puede sonar discordante: el grupo externo. Éste se elige bajo muchos supuestos, pero uno de los más importantes es que sea un pariente del grupo que queramos analizar, pero que no forme parte de él. Algo así como un pariente cercano, pero no tan cercano. El grupo externo le da polaridad a los datos y hace que la filogenia tenga sentido (de menos a más derivados). De otra forma obtendríamos arreglos con poco o nulo sentido. De ahí que en algunas filogenias que veas sobre digamos: félidos, usen una hiena como grupo externo. La hiena no es un félido, pero es pariente cercano y ayuda a dar sentido a los caracteres.

El grupo externo (en rojo) es usado para dar polaridad a la filogenia: para saber qué es más derivado y qué es una novedad evolutiva dentro del grupo.



Y bien, con esto llegamos al final de este post. En alguno otro hablaré sobre "filias": monofilético, polifilético, parafilético, etc. De momento es todo, con esta simple guía entenderás un poco el interesante mundo de los cladogramas. Si el tema te gustó o crees que es útil, ayúdame compartiendo. Gracias por tu tiempo y que tengas un excelente día.


Referencias:



Quiero agradecer especialmente a la Dra. Deneb García Ávila, quien tuvo la amabilidad de revisar este documento para que no se me fueran incoherencias y mentiras. Eso sí, las opiniones aquí vertidas son responsabilidad de quien suscribe.


lunes, 13 de marzo de 2017

Homo.. ¿qué? Y el cuello de las serpientes.

Homología.

Esa palabra es usada muchas veces en ciencias biológicas y principalmente en biología evolutiva y paleontología, donde significa algo simple, pero muy confundido. Se trata de caracteres (que por lo general son estructuras anatómicas) que tienen un mismo origen evolutivo, pero acaban desempeñando funciones distintas. Los santos corolarios que son los libros de texto nos ponen casi siempre ejemplos muy similares a este:

Miembros delanteros de diferentes tetrápodos. Los colores representan: café claro, el húmero; beige, el radio; rojo, la ulna (en humanos es llamada cúbito); amarillo, carpos; café obscuro, metacarpales y falanges. Imagen de Volkov Vladislav Petrovich.

Y bueno, el código de color simboliza que son el mismo hueso, pero que al modificarse en conjunto, el miembro delantero de los vertebrados puede generar por ejemplo: las manos que escriben este post, patas para correr, alas para volar y aletas para maniobrar. Y este breve post surgió por esta caricatura:

Caricatura de Mr. Lovenstein. Original aquí.

Estas pobres serpientes llegan incluso a un problema existencial, que intentan solucionar con alcohol. ¿Dónde carajo empieza el cuello de las serpientes? Seguramente muchos de ustedes se han de haber planteado esa duda en algún momento de sus vidas. Las serpientes ¿tiene cuello? ¿qué tal tórax? ¿hasta dónde son cola? ¿qué parte es la espalda? Les dejaré un esquema típico de una serpiente:

En esta epítome del esquema vemos... No vemos un demonio. Y es que, los esquemas de las serpientes, damas y caballeros, están censurados... Todos los dibujitos feos de serpientes carecen de algo importante: la cloaca.

La cloaca señores, es... Bueno, es una cavidad donde desemboca el drenaje y donde también está situado un parque de diversiones. Así es, esa cavidad sirve para orinar, defecar y de paso, poner los huevos, copular (si es el caso) y a veces, sirve de almacén de esperma. Una monada del "diseño". El punto es que, podemos saber dónde empieza la cola de una serpiente al mirar morbosamente cuidadosamente sus partecillas; pues la cloaca suele indicar el fin del torso y el inicio de la cola.

Esquema burdo (sacado de WikiHow) de dónde está ubicada la cloaca en una serpiente.

Y créalo o no, estimado lector, hay variación en el tamaño de la cola de las serpientes. Sí, no toda la pobre es cola; la serpiente sin corbata de la caricatura estaba errada. Veamos algo de variación en la longitud de cola de las serpientes.

Una Heterodon kennerlyi, serpiente del grupo de las colúbridas. En este grupo y en las elápidas, la cola es larga. En esta caso, inicia en la parte negra que se alcanza a ver en la parte ventral de la serpiente.

En cambio, los vipéridos y serpientes como boas y pitones (como la de la foto), tienen colas muy cortas. Foto de pitón bola, © 2006, Vida Preciosa International, Inc.

Pero, no podemos depender enteramente en la ubicación de la cloaca. Pues, aunque nos dice dónde inicia la cola, no nos indica dónde termina el cuello y dónde inicia el tórax. Para saber eso debemos mirar un poco el esqueleto. Resulta que aunque las serpientes de hoy parezcan sólo tubos homogéneos, sus ancestros tuvieron cuello y tórax. Y la osteología "recuerda" esos tiempos, pues mirándola podemos identificar estas zonas.

Las serpientes tienen regiones vertebrales. La región cervical, troncal, cloacal y caudal. Las vértebras cervicales tienen procesos parapofisearios (a) e hipapófisis; las vértebras troncales carecen de esto y poseen una quilla hemal (c); las cloacales tienen linfapófisis (d) y las vértebras caudales tienen pleurapófisis (f) [tanto cloacales como caudales tienen hemapófisis]. Figura modificada de Holman (2000).

Así es que la homología no sólo es una herramienta útil para identificar regiones aparentemente irreconocibles en un organismo. También es testigo de los procesos evolutivos, pues de otra forma ¿para qué tendría una serpiente un cuello ahí debajo? Y tú ¿sabías cómo identificar el cuello de una serpiente? Espero que ahora sepas hacerlo o al menos, sepas que sí tienen uno.

Si el post fue de tu agrado, no dudes en compartirlo. Me ayudas así a generar más contenidos, cada vez mejores.


Fuente:

Holman, J. A. (2000). Fossil snakes of North America: origin, evolution, distribution, paleoecology. Indiana University Press.

domingo, 19 de febrero de 2017

El origen de las arañas

Las arañas son uno de los grupos más conocidos de invertebrados. Actualmente gozan de una alta diversidad, pues se han descrito más de 45,700 especies. Con todo, no son el único grupo de arácnidos, pues según sus estudiosos, la clase Arachnida (a-rác-ni-da) contiene al menos 10 órdenes de los que, Aranae (las arañas verdaderas) son sólo un "pequeño" grupo. Todas ellas comparten la misma anatomía básica: un cefalotórax que contiene la cabeza y esas ocho patas bien reconocibles, seguida de un abdomen que alberga, entre otras cosas, los pulmones de la araña.

Anatomía interna de una araña. Trabajo modificado de Xvazquez.

Con todo y que las arañas son protagonistas de pesadillas, pocos fósiles se conocen de ellas. Principalmente porque, son de cuerpo blando y ese tipo de anatomía, rara vez fosiliza. Por ello, los científicos poco sabían de su origen (aunque ideas no faltaban). Aunque algo era seguro: aparecieron en algún punto del Carbonífero. Sólo que menos especializadas y definitivamente no eran gigantes como las mostraron en el documental de la BBC: "Paseando con monstruos", ya que ese bicho (el del documental) en realidad nunca fue una araña, sino un pedazo mal interpretado de "escorpión" marino.

La mítica araña "mesotelae" era en realidad el fósil mal interpretado de Megarachne, un escorpión marino. Imagen promocional, propiedad de la BBC.

El año pasado se describió un "eslabón perdido" de la historia evolutiva de las arañas. El fósil fue nombrado como: Idmonarachne brasieri y data del Carbonífero superior, de entre hace 299 y 305 millones de años de antigüedad. Y aunque no es una araña en el sentido estricto del nombre, se le acerca (y mucho). Lo maravilloso de este hallazgo es que el fósil está preservado en 3D, lo que permite estudiar mejor su anatomía. Gracias a este hecho, los científicos pudieron estudiar a detalle la araña y al llevar a cabo un análisis filogenético, resultó ser una "protoaraña", es decir, Idmonarachne representa al grupo más basal de arañas troncales conocidas a la fecha. Tras su estudio sabemos que las "protoarañas" ya tenían la forma clásica de una araña y la misma capacidad de inocular veneno a sus presas. Desafortunadamente la punta de la cola no se preservó y no se puede asegurar que este pequeñín haya producido la tan característica seda que fabrican las arañas. Sin embargo, los científicos apuestan a que es probable que sí haya producido dicha substancia.

Reconstrucciones en tomógrafo de Idmonarachne brasieri. Tomado de Garwood et al. 2016.

Gracias a hallazgos como estos podemos saber un poco más del origen de las arañas, que no fue gigante, sino modesto (de aproximadamente 1 cm de largo) y hace unos 300 millones de años, en lo que hoy es Europa. Sin duda que hallazgos como estos son recibidos con los (ocho) brazos abiertos.

Reconstrucción artística de Idmonarachne brasieri. Tomado de Garwood et al. 2016.


Fuente (artículo completo en el link):
Garwood, R. J., Dunlop, J. A., Selden, P. A., Spencer, A. R., Atwood, R. C., Vo, N. T., & Drakopoulos, M. (2016, March). Almost a spider: a 305-million-year-old fossil arachnid and spider origins. In Proc. R. Soc. B (Vol. 283, No. 1827, p. 20160125). The Royal Society.

miércoles, 15 de febrero de 2017

Paleoarte de la conservación

Cuando uno dice "paleoarte", generalmente vienen a la cabeza imágenes de ilustraciones, pinturas y otras representaciones pictóricas de criaturas extintas.

Sin embargo, el término "paleoarte" solía ser más que un frío monopolio de animalitos "posando". El paleoarte fue un término concebido dentro del mundo artístico. La definición fue creada por William John Thomas Mitchell  en 1998 y reza: "arte que comprende el presente y el futuro de las sociedades industriales avanzadas, y les otorga un nuevo marco al colocarlos en la perspectiva de la paleontología y la geología".

Y esta pieza de John T. Morano es realmente eso: paleoarte.

Morano describe su obra bajo la premisa de imaginar cómo sería tener dinosaurios (no avianos) vivos hoy en día. Y a diferencia de muchos soñadores, Morano nos presenta una cruda, pero muy cierta realidad.

Morano imagina un Triceratops recién cazado por furtivos. Le han mutilado para vender sus "partes" en el mercado negro.
Los cuernos son "medicina" que se vende en cientos de dólares para hacer crecer el pene, sobra decir que no funciona.
El pico se usa para crear una "poción" que te "hace más inteligente".

Pero los furtivos no terminaron el trabajo. Como se puede ver, aún quedan espinas, por lo que se piensa que el cadáver de este animal fue abandonado a prisa. Quizá porque las autoridades se aproximaban.

Pueden notar que faltan las patas. No se preocupen. Éstas servirán de taburetes para los ricos.

En esta historia ficticia, este Triceratops era bien conocido por la gente local. Era una hembra joven sana y que según el reporte de la necropsia, estaba a unos días de poner sus huevos.

Quizá la pieza de Morano no satisfaga a los críticos más refinados de arte. Quizá sea un poco "posmo" (por aquello de que el discurso se impone ante la ejecución y la técnica). Pero si recordamos la definición de paleoarte dentro de la teoría de la cultura, esta obra cumple cabalmente.

Es tiempo (nuevamente) de reflexionar sobre nuestros hábitos y de cómo estos afectan la vida del planeta. Sobre nuestro mitos y realidades. Pues recordemos, somos actores clave en esta historia, la historia de la vida en la tierra.

miércoles, 8 de febrero de 2017

¡Eran dos!

Ahhh los murciélagos, uno de los grupos de mamíferos más diversos de todos. Están en segundo lugar en cuanto a su número de especies, siendo superados sólo por los roedores. Los murciélagos están distribuidos en todas las masas continentales importantes del planeta, con excepción de los sets navideños de coca-cola: la Antártida y el alto Ártico, donde viven animales bastante extremos. Los no tan hardcore murciélagos gustan más de las zonas tropicales, donde su diversidad es impresionante. Pero no sólo abundan en número, sino en nichos ecológicos. Hay murciélagos insectívoros, frugívoros, hematófagos (bebedores de sangre), cazadores de vertebrados e incluso, pescadores.

Los murciélagos, la segunda historia más exitosa del árbol evolutivo de los mamíferos.

En las islas, los murciélagos son menos comunes, pues tienen como limitante el océano. Sin embargo, cuando los quirópteros llegan a las islas, producen rarezas, como el murciélago terrestre de Nueva Zelanda (Mystacina tuberculata) o el murciélago canoso Hawaiano (Lasiurus cinereus semotus), que era considerado el único mamífero nativo de las islas de Hawái. Sin embargo, un estudio reciente nos muestra que NO es el caso. Había una segunda especie de murciélago en las islas.

Murciélago canoso de Hawái. Créditos en la fotografía.

La evidencia muestra que el murciélago canoso hawaiano (Lasiurus cinereus semotus) arribó a las islas desde América del Norte continental, entre hace 7 y 10 mil años, después del último máximo glacial del Pleistoceno. Pero "llegó a barrer", pues milenios antes, las islas habían sido pobladas por Maui otro murciélago que se extinguió, pero arribó mucho antes: el murciélago de tubo de lava, Synemporion keana. Este mamífero llegó a las islas hace unos 320,000 años y perduró hasta aproximadamente el año de 1760. Según los investigadores, este mamífero (S. keana) se ha encontrado fosilizado en cuevas de Hawái, lo que es raro para un vespertiliónido, además de que no parece tener parientes norteamericanos, lo que sugiere que quizá este murciélago en realidad fue traído a las islas por Moana antiguos pobladores humanos.

Comparación de cráneos del murciélago canoso hawaiano (en gris apagado) y el murciélago de tubo de lava, Synemporion keana (en negro sólido). Tomado de Ziegler et al. (2016).

Así que ya lo saben, en las islas de Hawái sólo queda un murciélago nativo, pero antes, eran dos.


♪♫(somos los exploradores invitados)♫♪


Fuente:

Ziegler, A. C., Howarth, F. G., & Simmons, N. B. (2016). A second endemic land mammal for the Hawaiian Islands: a new genus and species of fossil bat (Chiroptera: Vespertilionidae). American Museum Novitates, (3854), 1-52.


lunes, 6 de febrero de 2017

Vegetariano y feo

Noticia vieja para algunos, nueva para otros. Resulta que en 2014 se describió a un bicho feo, tan feo que sólo su madre sería capaz de amarlo (y los paleontólogos, esos locos aman cada cosa). Se trata de Atopodentatus unicus, un reptil marino cuyo nombre significa "único y con dientes en lugares inusuales". Este animal vivió durante el Triásico medio (Anisiano) en lo que hoy es Yunnan, China. Su nombre hace referencia a que se creía que tenía los dientes en el medio del rostro, a manera de cremallera.

Atopodentatus unicus por Julius Csotonyi. Esta reconstrucción está hoy caduca. El cráneo fue tomado de Cheng et al. (2014) y fue añadido a la reconstrucción por un servidor.

Esta "cara fea" fue sujeto de debate, pero el fósil original con el que se describió al animal parecía sugerir que esa era su configuración normal. Eso cambió cuando la nación del fuego atacó apareció un nuevo material mejor preservado. Estos fósiles fueron descritos el año pasado y le hicieron una necesaria cirugía plástica al pobre atopodentato. La nueva cara del animal era rara, pero ya no tanto, pues ahora parecía que este reptil marino había surgido de una noche de copas entre una iguana y un pato (o un Nigersaurus viajero del tiempo y con filias raras).

La nueva cara del Atopodentatus. Ilustración de Joschua Knüppe. El cráneo de la izquierda fue añadido por un servidor y fue tomado de Chun et al. (2016).

Atopodentatus ya no parece una bestia de ciencia ficción. Resulta que el holotipo (ejemplar que representa a toda la especie) estaba roto y de ahí que saliera con esa cara tan rara. La realidad superó pronto a la ficción, pues resultó que esta bestia marina tenía una boca plana y en forma de aspiradora, que los científicos dedujeron estaba adaptada para poder mascar plantas. Atopodentatus pasó de ser un presunto filtrador al más antiguo reptil vegetariano del registro fósil.

Modo de vida de Atopodentatus, tomado de Chun et al. (2016), ilustración de Y. Chen.

Y con esto podemos atestiguar otro de los famosos "cambios de look" en paleontología, esos que se dan no por gusto, sino por nuevas evidencias.


Fuentes:

Cheng, L., Chen, X. H., Shang, Q. H., & Wu, X. C. (2014). A new marine reptile from the Triassic of China, with a highly specialized feeding adaptation. Naturwissenschaften, 101(3), 251-259.

Chun, L., Rieppel, O., Long, C., & Fraser, N. C. (2016). The earliest herbivorous marine reptile and its remarkable jaw apparatus. Science advances, 2(5), e1501659.

- Editado por Cristina Prieto ♥.